Gapminders#

import param
import numpy as np 
import pandas as pd
import panel as pn

import altair as alt
import plotly.graph_objs as go
import plotly.io as pio
import matplotlib.pyplot as plt

pn.extension('vega', 'plotly', defer_load=True, template='fast')
import hvplot.pandas

Configuration#

Let us start by configuring some high-level variables and configure the template:

XLABEL = 'GDP per capita (2000 dollars)'
YLABEL = 'Life expectancy (years)'
YLIM = (20, 90)
ACCENT = "#00A170"

PERIOD = 1000 # milliseconds

pn.state.template.param.update(
    site_url="https://panel.holoviz.org",
    title="Hans Rosling's Gapminder",
    header_background=ACCENT,
    accent_base_color=ACCENT,
    favicon="static/extensions/panel/images/favicon.ico",
    theme_toggle=False
)
<param.parameterized._ParametersRestorer object at 0x10e640390>

Extract the dataset#

First, we’ll get the data into a Pandas dataframe. We use the built in cache to speed up the app.

@pn.cache
def get_dataset():
    url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
    return pd.read_csv(url)

dataset = get_dataset()

YEARS = [int(year) for year in dataset.year.unique()]

dataset.sample(10)
country year pop continent lifeExp gdpPercap
1412 South Africa 1992 39964159.0 Africa 61.888 7225.069258
548 Gabon 1992 985739.0 Africa 61.366 13522.157520
284 Chile 1992 13572994.0 Americas 74.126 7596.125964
1553 Trinidad and Tobago 1977 1039009.0 Americas 68.300 7899.554209
56 Argentina 1992 33958947.0 Americas 71.868 9308.418710
1174 Pakistan 2002 153403524.0 Asia 63.610 2092.712441
961 Mauritania 1957 1076852.0 Africa 42.338 846.120261
8 Afghanistan 1992 16317921.0 Asia 41.674 649.341395
1642 Venezuela 2002 24287670.0 Americas 72.766 8605.047831
378 Croatia 1982 4413368.0 Europe 70.460 13221.821840

Set up widgets and description#

Next we will set up a periodic callback to allow cycling through the years, set up the widgets to control the application and write an introduction:

def play():
    if year.value == YEARS[-1]:
        year.value = YEARS[0]
        return

    index = YEARS.index(year.value)
    year.value = YEARS[index+1]    

year = pn.widgets.DiscreteSlider(
    value=YEARS[-1], options=YEARS, name="Year", width=280
)
show_legend = pn.widgets.Checkbox(value=True, name="Show Legend")

periodic_callback = pn.state.add_periodic_callback(play, start=False, period=PERIOD)
player = pn.widgets.Checkbox.from_param(periodic_callback.param.running, name="Autoplay")

widgets = pn.Column(year, player, show_legend, margin=(0,15))

desc = """## 🎓 Info

The [Panel](http://panel.holoviz.org) library from [HoloViz](http://holoviz.org)
lets you make widget-controlled apps and dashboards from a wide variety of 
plotting libraries and data types. Here you can try out four different plotting libraries
controlled by a couple of widgets, for Hans Rosling's 
[gapminder](https://demo.bokeh.org/gapminder) example.

Source: [pyviz-topics - gapminder](https://github.com/pyviz-topics/examples/blob/master/gapminders/gapminders.ipynb)
"""

settings = pn.Column(
    "## ⚙️ Settings", widgets, desc,
    sizing_mode='stretch_width'
).servable(area='sidebar')

settings

Define plotting functions#

Now let’s define helper functions and functions to plot this dataset with Matplotlib, Plotly, Altair, and hvPlot (using HoloViews and Bokeh).

@pn.cache
def get_data(year):
    df = dataset[(dataset.year==year) & (dataset.gdpPercap < 10000)].copy()
    df['size'] = np.sqrt(df['pop']*2.666051223553066e-05)
    df['size_hvplot'] = df['size']*6
    return df

def get_title(library, year):
    return f"{library}: Life expectancy vs. GDP, {year}"

def get_xlim(data):
    return (data['gdpPercap'].min()-100,data['gdpPercap'].max()+1000)

@pn.cache
def mpl_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Matplotlib", year)
    xlim = get_xlim(data)

    plot = plt.figure(figsize=(10, 6), facecolor=(0, 0, 0, 0))
    ax = plot.add_subplot(111)
    ax.set_xscale("log")
    ax.set_title(title)
    ax.set_xlabel(XLABEL)
    ax.set_ylabel(YLABEL)
    ax.set_ylim(YLIM)
    ax.set_xlim(xlim)

    for continent, df in data.groupby('continent'):
        ax.scatter(df.gdpPercap, y=df.lifeExp, s=df['size']*5,
                   edgecolor='black', label=continent)

    if show_legend:
        ax.legend(loc=4)

    plt.close(plot)
    return plot

pio.templates.default = None

@pn.cache
def plotly_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Plotly", year)
    xlim = get_xlim(data)

    traces = []
    for continent, df in data.groupby('continent'):
        marker=dict(symbol='circle', sizemode='area', sizeref=0.1, size=df['size'], line=dict(width=2))
        traces.append(go.Scatter(x=df.gdpPercap, y=df.lifeExp, mode='markers', marker=marker, name=continent, text=df.country))

    axis_opts = dict(gridcolor='rgb(255, 255, 255)', zerolinewidth=1, ticklen=5, gridwidth=2)
    layout = go.Layout(
        title=title, showlegend=show_legend,
        xaxis=dict(title=XLABEL, type='log', **axis_opts),
        yaxis=dict(title=YLABEL, **axis_opts),
        autosize=True, paper_bgcolor='rgba(0,0,0,0)',
    )
    
    return go.Figure(data=traces, layout=layout)

@pn.cache
def altair_view(year=1952, show_legend=True, height="container", width="container"):
    data = get_data(year)
    title = get_title("Altair/ Vega", year)
    xlim = get_xlim(data)
    legend= ({} if show_legend else {'legend': None})
    return (
        alt.Chart(data)
            .mark_circle().encode(
                alt.X('gdpPercap:Q', scale=alt.Scale(type='log'), axis=alt.Axis(title=XLABEL)),
                alt.Y('lifeExp:Q', scale=alt.Scale(zero=False, domain=YLIM), axis=alt.Axis(title=YLABEL)),
                size=alt.Size('pop:Q', scale=alt.Scale(type="log"), legend=None),
                color=alt.Color('continent', scale=alt.Scale(scheme="category10"), **legend),
                tooltip=['continent','country'])
            .configure_axis(grid=False)
            .properties(title=title, height=height, width=width, background='rgba(0,0,0,0)') 
            .configure_view(fill="white")
            .interactive()
    )

@pn.cache
def hvplot_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("hvPlot/ Bokeh", year)
    xlim = get_xlim(data)
    return data.hvplot.scatter(
        'gdpPercap', 'lifeExp', by='continent', s='size_hvplot', alpha=0.8,
        logx=True, title=title, responsive=True, legend='bottom_right',
        hover_cols=['country'], ylim=YLIM, xlim=xlim, ylabel=YLABEL, xlabel=XLABEL
    )

Bind the plot functions to the widgets#

mpl_view    = pn.bind(mpl_view,    year=year, show_legend=show_legend)
plotly_view = pn.bind(plotly_view, year=year, show_legend=show_legend)
altair_view = pn.bind(altair_view, year=year, show_legend=show_legend)
hvplot_view = pn.bind(hvplot_view, year=year, show_legend=show_legend)

plots = pn.GridBox(
    pn.pane.HoloViews(hvplot_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Plotly(plotly_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Matplotlib(mpl_view, format='png', sizing_mode='scale_both', tight=True, margin=10),
    pn.pane.Vega(altair_view, sizing_mode='stretch_both', margin=10),
    ncols=2,
    sizing_mode="stretch_both"
).servable()

plots