Panel dashboard#

datashaderpanel
Published: January 29, 2016 · Updated: August 20, 2024


The NYC Taxi trips dataset is a well-studied data science example. Here we show how to build a simple dashboard for exploring 10 million taxi trips in a Jupyter notebook using Datashader, then deploying it as a standalone dashboard using Panel.

Panel Dashboard
import holoviews as hv
import param
import dask.dataframe as dd
import panel as pn

from holoviews.operation.datashader import rasterize, dynspread
from holoviews.element.tiles import EsriStreet

hv.extension('bokeh')
usecols = ['dropoff_x', 'dropoff_y', 'pickup_x', 'pickup_y', 'dropoff_hour', 'pickup_hour', 'passenger_count']
df = dd.read_parquet('data/nyc_taxi_wide.parq', engine='fastparquet')[usecols].persist()
opts = dict(width=1000, height=600, xaxis=None, yaxis=None, bgcolor='black', show_grid=False)
cmaps = ['fire', 'bgy', 'bgyw', 'bmy', 'gray', 'kbc']

df.head()
dropoff_x dropoff_y pickup_x pickup_y dropoff_hour pickup_hour passenger_count
0 -8234835.5 4975627.0 -8236963.0 4975552.5 19 19 1
1 -8237020.5 4976875.0 -8237826.0 4971752.5 20 20 1
2 -8232279.0 4986477.0 -8233561.5 4983296.5 20 20 1
3 -8238124.0 4971127.0 -8238654.0 4970221.0 20 20 1
4 -8238107.5 4974457.0 -8234433.5 4977363.0 20 20 1
class NYCTaxiExplorer(pn.viewable.Viewer):
    alpha      = param.Magnitude(default=0.75, doc="Alpha value for the map opacity")
    cmap       = param.Selector(objects=cmaps)
    hour       = param.Range(default=(0, 24), bounds=(0, 24))
    location   = param.Selector(objects=['dropoff', 'pickup'])

    @param.depends('location', 'hour')
    def points(self):
        points = hv.Points(df, kdims=[self.location+'_x', self.location+'_y'], vdims=['dropoff_hour'])
        if self.hour != (0, 24):
            points = points.select(dropoff_hour=self.hour)
        return points

    def __panel__(self, **kwargs):
        points = hv.DynamicMap(self.points)
        tiles = EsriStreet().apply.opts(alpha=self.param.alpha, **opts)
        agg = rasterize(points, width=600, height=400).opts(cnorm='eq_hist', nodata=0)
        return tiles * dynspread(agg).apply.opts(cmap=self.param.cmap)
        
taxi = NYCTaxiExplorer(name="NYC Taxi Trips")
pn.Row(taxi.param, taxi).servable()

As you can see, the resulting object is rendered in the notebook (above), and it’s usable as long as you have Python running on this code. You can also launch this app as a standalone server outside of the notebook, because we’ve marked the relevant object .servable(). That declaration means that if someone later runs this notebook as a server process (using panel serve --show dashboard.ipynb), your browser will open a separate window with the serveable object ready to explore or share, just like the screenshot at the top of this notebook.

This web page was generated from a Jupyter notebook and not all interactivity will work on this website.