Polygons#

import hvplot.pandas  # noqa

Using hvplot with geopandas is as simple as loading a geopandas dataframe and calling hvplot on it with geo=True.

import geodatasets
import geopandas as gpd

chicago = gpd.read_file(geodatasets.get_path("geoda.chicago_commpop"))
chicago.sample(3)
Downloading file 'chicago_commpop.zip' from 'https://geodacenter.github.io/data-and-lab//data/chicago_commpop.zip' to '/home/runner/.cache/geodatasets'.
Extracting 'chicago_commpop/chicago_commpop.geojson' from '/home/runner/.cache/geodatasets/chicago_commpop.zip' to '/home/runner/.cache/geodatasets/chicago_commpop.zip.unzip'
community NID POP2010 POP2000 POPCH POPPERCH popplus popneg geometry
46 PULLMAN 50 7325 8921 -1596 -17.890371 0 1 MULTIPOLYGON (((-87.60157 41.68621, -87.60168 ...
28 NEAR WEST SIDE 28 54881 46419 8462 18.229604 1 0 MULTIPOLYGON (((-87.63759 41.88623, -87.63765 ...
5 LINCOLN SQUARE 4 39493 44574 -5081 -11.399022 0 1 MULTIPOLYGON (((-87.67441 41.9761, -87.6744 41...
chicago.hvplot(geo=True)

Control the color of the elements using the c option.

chicago.hvplot.polygons(geo=True, c='POP2010', hover_cols='all')

You can even color by another series, such as population density:

chicago.hvplot.polygons(
    geo=True,
    c=chicago.POP2010/chicago.to_crs('EPSG:32616').area,
    clabel='pop density',
)
This web page was generated from a Jupyter notebook and not all interactivity will work on this website.